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A systematic study of two-dimensional, turbulent, small-deficit wakes waa carried 
out to determine their structure and the universality of their self-preserving states. 
Various wake generators, including circular cylinders, a symmetrical airfoil, a flat 
plate, and an assortment of screens of varying solidity, were studied for a wide range 
of downstream distances. Most of the generators were tailored so that their drag 
coefficients, and therefore their momentum thicknesses, were identical, permitting 
comparison at identical Reynolds numbers and aspect ratios. The flat plate and airfoil 
had a small, trailing-edge flap which could be externally driven to introduce forced 
sinuous oscillations into the wake. The results indicate that the normalized charac- 
teristic velocity and length scales depend on the initial conditions, while the shape 
of the normalized mean velocity profile is independent of these conditions or the 
nature of the generator. The normalized distributions of the longitudinal turbulence 
intensity, however, are dependent on the initial conditions. 

Linear inviscid stability theory, in which the divergence of the mean flow is taken 
into account, predicts quite well the amplification and the transverse distributions 
of amplitudes and phases of externally imposed sinuous waves on a fully developed 
turbulent wake generated by a flat plate. There is a strong indication that the large 
structures observed in the unforced wake are related to the two-dimensional 
instability modes and therefore can be modelled by linear stability theory. Further- 
more, the interaction of the two possible modes of instability may be responsible 
for the vortex street-type pattern observed visually in the small-deficit, turbulent 
wake. 

1. Introduction 
Turbulent, plane wakes generated by circular cylinders in the absence of a pressure 

gradient have been the subject of numerous experimental investigations, the most 
notable of which are those by Townsend (1947, 1949). The results of these studies, 
along with results obtained in other free shear flows, led to the early ideas of 
self-preservation and Reynolds number independence proposed by Townsend (1 956). 
It was postulated that, sufficiently far downstream from the cylinder, an asymptotic 
self-preserving state is achieved for which the flow can be described by a single 
velocity scale uo and a single lengthscale Lo (see figure 1). That is, the transverse 
distributions of mean velocity and Reynolds stress must be independent of the 
streamwise coordinate x when normalized by these scales. One question under 
investigation presently is to determine whether and where these scales can be 
considered unique. 

It has been well established (Townsend 1956; Uberoi & Freymuth 1969; Symes & 
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FIGURE 1. A sketch defining the nomenclature. 

Fink 1977; Yamada et al. 1980) that far-awake flows are self-preserving and that the 
velocity and length scales, uo and Lo, vary as (x-z,)-a and (z-xo)l, respectively, as 
predicted by the equations of motion and the momentum integral constraint. The 
virtual origin, xo, is used to account for viscous or Reynolds-number effects. 
Furthermore, Townsend (1956) indicated that at sufficiently high Reynolds number, 
Lo/d and uo/U,  are universal functions of x/d only, where d is the diameter of the 
cylinder. The initial motivation for the present study stemmed from comparing some 
early measurements describing the downstream variation of the streamwise 
component of turbulence intensity. We observed large differences between our data 
and data reported in the literature that could not be attributed to experimental 
technique (figure 2). Large differences between the various results are evident, and 
the trends in the data are quite different at large z/C, d, where C,  is the drag 
coefficient. At the time (circa 1970), most investigators used the cylinder diameter 
for the purpose of normalization. Considerations based on the equations of motion 
show that the momentum thickness, 8, should have been used as the normalizing 
lengthscale for the small-deficit wake. That is, the drag force exerted on the fluid by 
the cylinder should be used to define the initial flow conditions. We will use 28 because 
C, d = 28. It can be shown that the normalized velocity and length scales should 
vary as 

The data of Townsend (1956), Symes & Fink (1977), and Yamada et al. (1980) confirm 
the above relations and show that mean velocity profiles observed by each investigator 
are self-similar when scaled by their individual velocity and length scales. However, 
comparison of the data indicates a possible lack of universality in the behaviour of 
these scales ; that is, different wakes developed differently with downstream distance. 

Sreenivasan (1981) examined the manner in which wakes produced by a variety 
of generators approached self-preserving states. He observed substantial differences 
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FIQURE 2. Centreline turbulence intensity for wakes generated by circular cylinders. 0, Marasli 
(1983), Re = 1360, AR = 384; ., Marasli, Re = 5900, AR = 128; 0, Townsend (1956), Re = 1360, 
AR = 240; ---, Townsend (1949); -, Uberoi & Freymuth (1969), Re = 4320, AR = 192; &, 
YamadaetaZ.(1980),Re = 4000,AR = 80;V,Champagne(1978),Re = 19000,AR = 32;A,Symes 
& Fink (1977), Re = 6666, AR = 150, no ext. turb. added; A, Symes t Fink, with ext. turb. added. 

in the way these flows evolved, even though each flow preserved the shape of the mean 
velocity profile when normalized by its own characteristic scales. Sreenivasan & 
Narasimha (1982) suggested that a unique self-preserving state exists for all plane 
wakes and defined the characteristic constants stemming from their suggestion. We 
felt at the time that their data did not fully support their conclusion, and the present 
study compiles further evidence negating it. 

A possible explanation for the lack of uniqueness is suggested by the results of 
Symes & Fink (1977), who investigated the effect of free-stream turbulence on the 
development of wakes. They showed that the relative scale of the external turbulence, 
rather than the level of the turbulence intensity, was an important parameter 
affecting the development of the wake. As each experimental facility has its own 
characteristic free-stream disturbances, wakes generated in a particular facility may 
be unique to that facility only. The lack of universality of various small-deficit wake 
flows might be explained in terms of the instability of the mean velocity profile in 
the wake. Related to this are the flow visualization results of Cimbala, Nagib & 
Roshko (1981), which revealed that large coherent structures develop far downstream 
from the wake generator and these are not necessarily related to the vortices shed 
from the generator. This was sufficient evidence to suggest that the wake, like the 
mixing layer, contains large-scale coherent structures which may have a wave-like 
behaviour. Travelling, large structures were observed in both laminar (Freymuth 
1966) and turbulent (Brown & Roshko 1974; Oster & Wygnanski 1982) mixing layers, 
and their behaviour was explained by an instability mechanism (Michalke 1965; 
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Gaster, Kit & Wygnanski 1985). The similarity of the patterns occurring in both 
laminar and turbulent states is not surprising in view of the fact that the instability 
mechanism is principally inviscid and is controlled by the mean velocity profiles, 
which are similar in both situations. Gaster et al. computed the amplitude distributions 
and the phase speeds of travelling waves associated with large coherent structures 
in the plane turbulent mixing layer, and they obtained very good agreement with 
experimental results by accounting for the effects of mean flow divergence. The mean 
velocity profile in the wake is also inviscidly unstable, and its shape is not affected 
by transition from laminar to turbulent flow, suggesting that a similar analysis could 
predict the evolution of the large-scale structures in this flow as well. 

The stability and transition of a plane wake, generated by a thin plate placed 
parallel to a uniform flow, was considered by many investigators (e.g. Sato & Kuriki 
1961 ; Mattingly & Criminale 1972; Zabuski & Deem 1971). The analysis in these 
investigations was always concerned with the immediate neighbourhood of the 
trailing edge, where the velocity deficit was greater than 60% of the free-stream 
velocity. Sato & Kuriki (1961) limited their analysis to a temporal evolution of the 
instability at  one location in the flow, and Mattingly & Criminale (1972) considered 
the instability of the wake to natural disturbances in both time and space and 
concluded that the spatial evolution of a travelling wave gives superior predictions 
for the disturbance characteristics experimentally observed. The analysis invariably 
assumed that the flow was parallel and was therefore limited to a prescribed 
streamwise location in which the width of the wake was defined. The parallel flow 
assumption represents a severe constraint on predicting growing disturbances in the 
wake because, in addition to the local width of the flow, the characteristic velocity 
scale must also change as a result of the divergence. 

In  contradistinction to the mixing layer, the plane wake is susceptible to both 
symmetrical (varicose) and antisymmetrical (sinuous) modes of instability. The 
varicose mode was traditionally disregarded (e.g. Sato & Kuriki 1961) because 
calculations based on the parallel flow approximations indicated that the most 
strongly amplified disturbances were sinuous. Data obtained in this investigation 
attribute the lack of universality of the self-preserving wake, at least partially, to 
the interaction between the two modes. Certainly, if one is interested in examining 
the wake over long distances, one cannot neglect the varicose mode of instability. 

The scope of the present investigation is limited to the small-deficit wake starting 
some 100 momentum thicknesses from the generator and extending to 2000 momentum 
thicknesses downstream. The flow was always incompressible, with free-stream 
velocities not exceeding 35 m/s and typical Reynolds numbers of a few thousand. 

2. Experimental Arrangement 
The wakes were generated in the University of Arizona wind tunnel facility. The 

80-ft-long tunnel is a closed-circuit type built by Kenney Engineering of California 
and is nearly identical to its counterparts at Tel Aviv University and the University 
of Southern California. The test section is 2 f t  wide, 3 f t  high, and 20 ft long. The top 
and bottom walls, which are adjustable in height, were adjusted to compensate for 
boundary-layer growth and to obtain a zero streamwise pressure gradient. A 30 hp, 
variable-speed motor with tachometer generator and a motor controller drives an 
axial flow fan with variable-pitch blades. The blades were set to their minimum pitch 
angle to minimize large-scale turbulence generation. In  this configuration, the fan 
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easily supplied the necessary range of speeds in the test section required for the 
present study, that is, 2 to 35 m/s. The tunnel is equipped with chilled water cooling 
coils just downstream of the diffuser section and an electric heating unit just upstream 
of the fan to control the flow temperature. A Minco platinum resistance thermometer, 
connected to a special bridge and digital panel display unit, allows measurement of 
the mean temperature of the flow to f0.05 "C. 

The plenum chamber contains 4-inch-thick hexcell honeycomb, five 20-mesh 
stainless-steel screens, and a 4-ft stilling section. Following this section is the 10: 1 
contraction section with a fifth-order polynomial contour to ensure separation-free 
acceleration of the flow to the test section. The wake generators were mounted 
horizontally across the 2-foot span of the test section at a streamwise location 2 feet 
downstream from the inlet. Measurements of the velocity profile a t  this plane 
indicated that the flow was uniform to f0.25 %. The free-stream disturbance level 
in the streamwise velocity component is approximately 0.03 %. The free-stream speed 
was monitored using a pitot tube placed 1 foot below the wake generator and about 
2 inches into the flow. The Pitot tube was connected to an MKS Baratron pressure 
transducer unit. 

Velocities were measured using a rake of nine Disa 55P01 hot-wire probes 
connected to Disa 55M01 and 56C01 constant temperature anemometers. The rake, 
which was 1.75 inches in total height, was used to measure the mean streamwise 
component of the instantaneous velocity. The rake was mounted on an internal 
traversing mechanism with a swept-forward, thin extension arm, placing the probes 
upstream of any region of flow interference caused by the mechanism. The mechanism 
permitted traversing in the streamwise and vertical directions with resolutions of 0.10 
and 0.01 inch, respectively. The anemometer signals were conditioned using buck and 
gain amplifiers and simple low pass RC filters with a 6-dB cutoff point at 10 kHz. 
The conditioned signals were sent directly to the analog-to-digital converter in the 
data acquisition system. An LS111/23 data acquisition/on-line computer system was 
used for digital signal processing. The major components of the system include an 
LS1 11/23 microprocessor, a 15-bit A/D converter with 10 channels of simultaneous 
sample-and-hold circuitry; a dual-density, 125-ips, tape drive; a 160 M-byte hard 
disk; 256 K-byte static memory; a printer/plotter; two Tektronix 4006 graphic 
terminals; a Tektronix 461 1 hard-copy unit; and a SKYMNK array processor. The 
multiple channel capability allows simultaneous, continuous sampling of up to 10 
channels, with variable sampling frequency up to 10 kHz. The system can be used 
as a data logger, i.e. to create digital tapes, or as an on-line computer for real-time 
analysis. 

For calibration, the hot wires were placed in the free stream, well outside the wake, 
along with a Pitot tube which was mounted near the rake. The bridge voltage signals 
and the output of the pressure transducer connected to the Pitot tube were sent to 
the A/D converter. An nth-order polynomial, U = P,(E), where the independent 
variable E is the conditioned bridge voltage, was fit to several calibration velocities 
for each hot wire, thereby providing an overall calibration for each sensor. The wires 
were calibrated only over the range of velocities to be measured in the wake, typically 
0.80 U ,  to 1.05 U,. Whenever the velocity deficits exceeded 0.20 U,, a second-order 
polynomial was used; whereas for u,, < 0.10 U,, a linear fit was adopted, speeding 
on-line computations. 

During the course of the experiments, the temperature of the flow was maintained 
at f 0.10 "C of the calibration temperature. The hot wires were continuously checked 
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for drift. The results were sensitive to any minor calibration changes because the 
maximum velocity deficit was of the order of 5 yo. Generally, 27-36 data points were 
taken to define a mean velocity and turbulence intensity profile. 

Lateral velocity component fluctuations were measured with a four-probe array 
of symmetric X-wires. The X-wires were calibrated in the free-stream portion of the 
wind tunnel using an anemometer response equation of the form 

where U and V are the calibration velocity components, Ej is the anemometer bridge 
voltage, and P, is a second-order polynomial given by 

U -  A3,j V = $(Ej) (j = 1,2), (2.1) 

The X-wires were calibrated at 20 points (4 velocities and 5 yaw angles in the range 
+_ 10') and the unknown constants A , ,  n = 0,  . . . , 3 and j = 1, 2, were solved by 
least-squares fit. The instantaneous velocity components U and V could then be 
computed from 

V ( t )  = '(E1)-'('2), U( t )  = <(El)  - A3, V .  
A 3 , 2 A 3 , 1  

Again, the wires were calibrated only over the range of velocities to be measured in 
the wake. 

The wake generators used in the present experiments are described in table 1. The 
circular cylinders were steel, drill rods and the screens and solid strip were stainless 
steel. The cylinder, screens, and solid strip were all mounted under adequate tension 
to ensure that the generators were straight and rigid. The screens and solid strip were 
specially constructed to have the same momentum thickness as the ft-inch-diameter 
(4.76 mm) cylinder at Re, = 4000. The aspect ratio Y / d  was approximately 240 for 
the referred cases. To introduce controlled excitations into the wake, a small flap 
(5  mm in length) was attached to the trailing edge of the flat plate and airfoil. Violin 
strings were used to connect the downstream edge of each side of the flap to two 
matched loudspeakers, one located on each side of the plate just outside the tunnel 
sidewalls. The speakers were driven in phase at the desired amplitudes and frequencies 
by an audio amplifier fed by a Krohn Hite function generator. The forcing frequency 
and amplitude were monitored by a frequency counter and r.m.s. meter. 

3. Theoretical considerations 
3.1. Similarity conditions 

For a developing wake flow sufficiently far from the generator, the transverse 
distributions of mean velocity and Reynolds stresses are assumed to be self-preserving. 
That is, these distributions assume functional forms which are independent of x when 
normalized by the velocity and length scales, uo and Lo respectively. This can be 
expressed in the form 

I u = urn - -U, f (r l ) ,  

,iP = U : s l l ( r l ) ,  

UtJ = U : s l a ( r l ) ,  

9 = u:922(rl), 

?77 = u:933(rl), 

- 



38 I .  Wygnamki, F. Champagne and B. Marasli 

where 7 = y/Lo and uo and Lo are defined in figure 1. In general, uo and Lo will be 
functions of the following parameters : 

uo, Lo = fcns (x, p,  u, U,, F, 9, d,  geo, uks ,  NFs, others) (3.2) 
where 

9 = span of the wake generator, 
d = characteristic width of the wake generator, 

geo = geometry of the wake generator, 
uks = amplitude of the free-stream disturbance level, 
NFS = nature of the free-stream disturbance, 
F = drag force on the wake generator per unit length, 

others = magnitude and nature of any vibration of the wake generator. 

The conditions under which self-preserving flow is possible can be obtained by 
substituting the self-preserving distributions into the equations of mean momentum 
and turbulent kinetic energy and examining the coefficients in the resulting equations. 
For the small-deficit far wake in the absence of a pressure gradient, i.e. when 
uo/U,  4 1, Townsend (1970) obtains the conditions 

U,Loduo  COO U dL 
ui dx uo dx ' 

~- (3.3) 

The self-preserving functions are also subject to the momentum integral constraint 

where 8 is the momentum thickness. In  terms of the self-preserving function, f, this 
becomes 

where 

are constants for a given wake flow. However, (3.4)-(3.6) are only consistent with 
(3.3) when uo/U,  4 1 and the second term in (3.5) is dropped. This places a constraint 
on the product (uo Lo) of the two scales, since in the absence of a pressure gradient, 
F, 8, and U ,  are constants independent of x. Dimensional reasoning, along with the 
linear part of (3.5), indicates the variables, F, p,  and U ,  in equation (3.2) should 
appear in the combination F/pU, [see also (3.4)]. It can be easily shown from (3.3) 
and (3.4) that 

and 

ug N [p F 1; N ["I:, u, V,(Z-X,) x-xo (3.7) 

where xo, the virtual origin, is commonly assumed to depend on the Reynolds number 
and geometry of the generator. This indicates that 8 is the appropriate normalizing 
length scale. 

If a universal self-preserving state exists independent of initial conditions, free- 
stream disturbances, and other parameters, the normalized distribution functions f 
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and gs are universal functions and uo and Lo, the normalized velocity and length 
scales, should vary as 

and (3.10) 

where 5 = (z-zo)/2S and A and B are universal constants. The factor 28 is used to 
normalize z because 28 = C, a?, which is nearly equivalent to normalization by d since 
for circular cylinders C, A 1. Townsend (1956) and others used d in presenting their 
cylinder data. 

According to Sreenivasan & Narasimha (1982), (3.7) and (3.8) may be written in 
the form 

(3.11) 

and A = L,(ze)-t (3.12) 

where W and A are universal constants, provided the small-deficit, equilibrium wake 
is independent of initial conditions existing near the generator (see also Narasimha 
& Prabhu 1972). These parameters are related to the slopes in the relations (3.9) and 
(3.10) above. If we d e h e  Wo and A, by (3.11) and (3.12), where z is replaced by z-zo, 
then A = 2/& and B = 24:. 

3.2. Linear stability analysis 
The propagation of small-amplitude, wavy disturbances in a free shear layer was 
considered analytically by Bouthier (1972), Crighton & Gaster (1976), and Gaster et 
al. (1985). Since the analysis applied to the plane wake is identical to that presented 
in the latter reference, only the governing equations and essential features will be 
presented here. 

The equation of motion comidered is inviscid and has the following form 

asz asz a52 -+ u-+ v- = 0, 
at az ay (3.13) 

where SZ is the vorticity and U and V represent the velocity components in the z- 
and y-directions, respectively. Upon neglecting the nonlinear terms, which are 
deemed to be small, and assuming that a given mean flow is parallel to the first order 
of approximation, the solution for the perturbation equation has a general form 

$ = RPMY) exP[i(~-/3~Bt)ll, (3.14) 

where R P  stands for the real part and the eigenfunction #(y) is defined by the inviscid 
form of the Orr-Sommerfeld equation 

[ U ( y ) - ~ ( ~ ~ - a " ) - - U " ( y ) #  = 0, (3.15) 

in which the primes denote differentiation with respect to y. The whve number a and 
the disturbance frequency /3 are eigenvalues determined by the solutions of (3.14, 
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which decay exponentially on both sides of the wake. Namely, the boundary 
conditions are 

#’(&oo)&a#(&oo) = o .  (3.16) 

Although the divergence of the mean flow may be partially controlled by the stresses 
resulting frdm the interaction with the disturbances present, within the realm of the 
linear approximation the slowly divergent mean flow is assumed to be prescribed by 
equations (3.1). Since the mean flow is assumed to be known, the conditions of 
self-preservation are not crucial to the analysis; the only requirement is that the 
derivatives of the mean stream function @ with respect to x should be much smaller 
than the derivatives with respect to y (i.e. the boundary-layer approximation 
applies). 

By analogy with the parallel flow problem, the perturbation solution has the form 

(3.17) 

where a(x) is a local wavenumber and the eigenfunction $(x, y)  changes only slowly 
with x. Since one expects the correction terms resulting from the slow divergence to 
be small, a(x) and $(x, y) at a given streamwise location are still determined locally 
by (3.15), for which the mean velocity field U(x, y) is known, and the correction term 
is defined by 

A(x) = A,  exp 

where 

N ( z )  = J-: { / 3 [ $ 2 + 2 a z ] +  U [ ~ - 3 a 2 - - 3 a $ -  a$ 
ax 

au,  a$ 
+$’-+ ax U”-+ ax V[$’”-a2$]]$dy, (3.18) l 

and 
m 

M ( z )  = [ {2a/3$+ U[$”-3a2$]- U”$}$dy, 
J- -00  J 

where $(x, y) is the adjoint function of $(z, y) given by 

[u(x,y)-g[$P-a2$1+2u,(P = 0, (3.19) 

with the boundary conditions presented by 

&(&oo)ka$(&co) =o .  (3.20) 

When the mean velocity profile is symmetrical with respect to the line y = 0, the 
inviscid Orr-Sommerfeld equation admits both symmetrical (varicose) and antisym- 
metrical (sinuous) modes of disturbances. For parallel flow, one may take advantage 
of the symmetry and substitute a boundary condition on the centreline for the 
boundary conditions on one side of the wake, 

(3.21) d(0) = &O) = 1,  

for the sinuous mode of disturbance, or 

$ ( O )  = $(O)  = 0, 

$’(O) = &(O)  = 0, 

#’(O) = &(O)  = 1, (3.22) 
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representing the varicose mode. By virtue of the symmetry, one may usually confine 
attention to the semi-infinite interval (0, + 00)  as in the parallel flow computations. 

For a given real frequency p of the disturbance, the complex eigenvalues a(z) and 
eigenfunctions $(x, y) and $(x, y) were evaluated at each of the streamwise locations 
of interest, provided the imaginary part ai(z) < 0 (i.e. the disturbances in the 
quasi-parallel flow approximation are amplified in the downstream direction), and 
these solutions were used in determining A(x) .  The mean velocity field used in solving 
(3.15), (3.18) and (3.19) was obtained experimentally and was expressed by the 
exponential distribution 

(3.23) - = 1 - 0  exp [ -0.63772-0.05674], 

where U ,  is the free-stream velocity and uo(x) and Lo(x) are the velocity and length 
scales discussed in $3.1. Despite the fact that the normalized shape of the velocity 
profile, f(q), remained invariant for all wake generators considered, the eigensolutions 
had to be re-evaluated for each generator separately since uo(x) and Lo@) are 
dependent on the conditions a t  the generator, even for the small-deficit wakes. 

Sato & Kuriki (1961) considered the temporal evolution of the small-amplitude, 
sinuous disturbance at a single location in the flow at which (1 -uo/U,)  = 0.692. 
Mattingly & Criminale (1972) extended these calculations to both modes of instability 
evolving spatially and temporally at five prescribed locations in the immediate 
vicinity of the trailing edge of a flat-plate [i.e. for 0.44 > (1 - uo/ U,)  > 01. Since these 
computations are strongly dependent on uo/U,, the solutions obtained are of little 
value in predicting the character of the amplified disturbances in the small-deficit 
wake for which uo /U,  < 1. Furthermore, the assumption of parallel mean flow (i.e. 
the constancy of uo/ U ,  and of Lo/O) led to the general belief that the varicose mode 
has a negligible effect on the flow because its rate of amplification ( -al) is smaller. 
It will be shown later that even a superposition of the two modes of instability leads 
to physically acceptable flow patterns associated generally with large coherent 
structures contained in the wake, in spite of the presence of the turbulent fluctuations, 
which was not considered in the calculations. 

U U 

U W  u, 

4. Experimental results 
4.1. General 

The mean flow field in the self-preserving region of a wake, the turbulence intensities, 
and Reynolds stresses were measured for a variety of two-dimensional wake 
generators. Data were obtained at distances ranging from 100 to 2000 momentum 
thicknesses downstream of the generator, where typical velocity deficits on the 
centreline of the wake varied from 0.15 U, to 0.03 U,. The velocity at which the 
measurements were done varied from 7 to 20 m/s, corresponding to a range of 
Reynolds numbers based on the momentum thickness and the kinematic viscosity 
of air of 650 to 3200. In  most instances, the shape and the size of the wake generators 
were tailored to provide a constant momentum thickness. The effects of Reynolds 
number and aspect ratio were examined separately in wakes generated by circular 
cylinders. Forced sinuous disturbances were generated in the wake of a symmetrical 
airfoil (having a maximum thickness to chord ratio of 30 yo) and a flat plate (thickness 
to chord ratio of 2 yo) by an oscillating, small flap mounted at the trailing edge. The 
results are summarized in table 2. 
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Wake generator 

ip in. Cylinder 
30 % Solidity screen 
45 % Solidity screen 
70 % Solidity screen 
Solid strip 100% 
solidity 

Symmetrical airfoil 
Flat plate 
Flat plate 
flap freq. = 50 Hz 
AMP = 0.2 v 

Flat plate flap 
freq = 50 Hz 
AMP = 0.3 V 

Flat plate flap 
freq = 20 Hz 
AMP = 0.5 V 
4 in. Cylinder 

(Chapman 1982) 
& in. Cylinder 
& in. Cylinder 

urn e 
(m/s) (mm) 
14.5 2.33 
14.5 2.31 
14.5 2.33 
14.5 2.39 
14.5 2.31 

14.5 2.34 
7.45 2.36 
7.45 2.36 

7.45 2.46 

7.45 2.40 

20.7 2.54 

21.4 0.737 
14.5 0.737 

2 0  

- 74 
58 
27 

-21 
-64 

-190 
5 

48 

- 
28 

61 

48 

- 100 

- 170 
- 130 

TABLE 2. 

w, 
1.75 
1.82 
1.78 
1.67 
1.88 

1.56 
1,71 
1.48 

1.32 

1.57 

1.74 

1.77 
1.74 

A0 

0.289 
0.279 
0.285 
0.302 
0.270 

0.320 
0.297 
0.344 

0.382 

0.323 

0.288 

0.285 
0.287 

w,X& 

0.506 
0.508 
0.507 
0.504 
0.508 

0.500 
0.508 
0.509 

0.504 

0.507 

0.501 

0.504 
0.500 

4.2. The universality of the mean $ow jield in a small-dejicit, plane wake 
The wake investigated most extensively is that  generated by a circular cylinder, and 
therefore our investigation started with this wake generator. Some 400 momentum 
thicknesses downstream, the velocity scale uo was indeed proportional to x-, and the 
width of the wake Lo was proportional to &, suggesting that similarity of the mean 
flow was indeed attained. The mean velocity profiles were plotted in the similarity 
coordinates and collapsed quite neatly onto a single curve described by the exponential 
function 

f(7) = exp [ -0.63772-0.05674], (4.1) 

(figure 3). The exponential function traditionally used to describe the mean velocity 
profile {i.e. f(7) = exp [ -0.693q2]} overestimates the mean velocity measured at the 
outer edges of the wake and, therefore, the fourth-order correction term was added. 
We expected the flow to be independent of Re when all lengthscales were normalized 
by the momentum thickness, and indeed the values of W, and do were not affected 
by changes in Re ranging from Re, = 1360 to Re, = 5900. The aspect ratio of the 
cylinder was varied from 96 to 384 by changing the diameter of the cylinder and 
keeping the span constant (i.e. the distance between the sidewalls of the wind tunnel). 
The two-dimensionality of the mean flow field was checked at  Z = 430 by comparing 
velocity and turbulence intensity profiles obtained at  z /Lo  = O +  7.5 and was found 
to be satisfactory. The values of Wo = 1.75 and do = 0.287 fitted quite well all wakes 
generated by a circular cylinder (the values were averaged over experimental points 
with Z > 200). This result would give credence to the universal equilibrium concept 
suggested by Sreenivasan & Narasimha (1982), except that the asymptotic values of 
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FIGURE 3. The shape of the self-similar mean velocity profile. Data from 30 yo solidity screen 
for 200 < Z < 700. 

the constants suggested by these authors were quite different, i.e. W, = 1.63 and 
A ,  = 0.300. The present data on the downstream development of the mean flow field 
behind a circular cylinder agree quite well with those obtained by Symes & Fink (1977) 
and Yamada et al. (1980), but only partially with Townsend’s (1956) data. Our data 
on the mean wake growth, L,(x), agree with Townsend’s but not the corresponding 
data on uo(z). It should be noted that there are very little data available on the mean 
wake growth and uo(z), even for circular cylinders, and this is undoubtedly 
attributable to the difficulty of obtaining such data. 

The uniqueness of the mean velocity profile and the mean wake development for 
circular cylinders in our facility could lead to the conclusion that either the 
development of the plane, small-deficit wake is not susceptible to external disturbances 
or the velocity-dependent external disturbances in our wind tunnel (like the fan-blade 
passage-frequency, vibrations, etc.) are negligible within the range of variables 
considered. To answer this question, we could take our cylinders to other wind tunnels 
and repeat our experiments, but such testing could introduce new uncertainties over 
which we have no control. To avoid these difficulties, we addressed a related question. 
That is, in a given facility, are the x development of u, and Lo dependent on the nature 
of the wake generator, holding all other controllable variables constant ? We 
proceeded, therefore, to investigate wakes produced by a variety of two-dimensional 
generators. The first family of generators considered were screens with solidity ratios 
ranging from 30 to 100 % (a thin metal strip placed normal to the free stream). The 
porous screens have numerous advantages : (i) there is no flow reversal in the vicinity 
of the generator with all its ensuing experimental complications; (ii) the porous 
screens do not generate vortices in the same way as the circular cylinders do and, 
therefore, their drag should not be as sensitive to Reynolds number; (iii) the roll-up 
of vortices in the mixing layers generated in the neighbourhood of the screens is, in 
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FIQURE 4. The variation of u,, and Lo with 5 for three wake generators; 0,  airfoil; A, 70 % 
solidity screen; 0 ,  solid strip. 

principle, predictable and dependent on the solidity (Gaster et al. 1985); and (iv) the 
drag of screens having a different solidity can easily be equated by altering the size 
of the screens. It was decided to maintain the momentum thickness of all four screens 
constant in order to avoid any questions about the unknown effects of Reynolds 
number or aspect ratio in the development of the plane, small-deficit wake. The 
results show that the shape of the normalized mean velocity profile is identical to 
that obtained for the circular cylinder in all cases considered, yet the values of W, 
range between 1.67 for the 70% solidity screen to 1.88 for the limiting case 
representing the solidity of 100 % . 

The value of W, decreases with increasing solidity of the screens, provided the 
porosity suffices to prevent flow reversal in the lee of the screen; however, the value 
of W, for the solid strip (which is regarded as a screen having 100 yo solidity) is higher 
than the value of W, for the most porous screen investigated (solidity of 30 %). This 
result is attributed to the observed alternate shedding of vortices from the two 
separation points on the strip. The determination of the threshold solidity beyond 
which an alternate shedding of vortices starts to occur is not within the scope of the 
present investigation. 

In the absence of periodic forcing, the lowest W, measured in this experiment was 
attained in the wake of a non-lifting, thick, symmetrical airfoil section. The mean 
velocity field in the wake of the flat plate was nearly identical to the velocity field 
produced by the wake of a circular cylinder except for the location of the virtual origin 
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FIQURE 5. The variation of wo with uo/U for three wake generators; a-m, airfoil; A-A, 
70  % solidity screen ; 0-0, solid strip. 

2,. The introduction of periodic surging reduced the effective W, from 1.71 to 1.56 
without affecting the overall drag experienced by the body (i.e. the product W, A J .  
The location of the virtual origin moved downstream with increasing amplitude of 
the forced oscillations (table 2). 

The product W, A ,  represents the conservation of momentum within the context 
of the linearization and, therefore, its constancy for all wake generators (W, A ,  = 
0.506+0.002) reaffirms the suggestion that the normalized shape of the mean 
velocity profile (figure 3) is universal for all the wake generators considered. Some 
examples of the variation of (U,/U,)~ and with 5 are shown in figures 4(a) 
and (b), respectively, establishing that the coefficients of proportionality A and B 
[(3.9) and (3.10)] or W, and A ,  depend on the wake generator. 

The mean velocity in the wake obeys the similarity scaling for 5 > 400. The 
different slopes of the lines drawn in figure 4 (a )  result in a diversity of estimates for 
W, (figure 5 ) ,  varying between 1.5 and 1.9 depending on the wake generator. The 
differences are large and are not attributable to experimental inaccuracy. 

Only one value of x, was chosen for each wake generator, and it had to satisfy the 
dependence of both u, and Lo on initial conditions. The choice of xo does not affect 
the dependence of W, or A ,  on the initial conditions, although the absolute values 
of W, and A ,  may vary slightly if improper values of xo were used. Figure 5 
demonstrates this point. The open symbols refer to physical distances measured from 
the trailing edge of the generator (i.e. x, = 0) ,  and therefore the values of W, based 
on these data define a sloping curve rather than a horizontal line. This effect is 
particularly severe whenever 2, is large, as it is in the wake of the symmetric airfoil. 
It is apparent, therefore, that for the range of distances considered, the mean flow 
in the plane, small-deficit, turbulent wake is dependent on the initial conditions set 
up by the generator. 

The preservation of momentum deficit in the wake produced by all the generators 
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FIGURE 6. The dependence of OIL, on uo/U,. Symbols represent data from all wake 
studied. 

generators 

considered above is illustrated by plotting OIL, versus uo/U,  (figure 6). For similar 
velocity profiles, 

with Yn as defined in (3.6). 
Equation 4.2 describes a parabola (a solid curve in figure 6), while the linear 

approximation (8/L,)  (U,/u,) = 9l is drawn as a dotted line. The values of 9l and 
Y2 are 2.06 and 1.505, respectively, and are in excellent agreement with the data of 
Sreenivasan & Narasimha (1982). Measured values of OIL, follow quite clearly the 
parabolic curve for all uo/Urn < 0.14. One can obtain an expression for O/L,  by 
eliminating X from (3.9) and (3.10), which yields 

The quantity (l/Wo A,)  was found to be 1.97 as opposed to Yl = 2.06, and therefore 
(4.3) represents a better approximation to the data than does the linear approximation 
to (4.2). 

4.3. The lack of universality of the turbulent jield 

For a self-preserving wake (Townsend 1956), the transverse distributions of the 
intensities and Reynolds stresses are given by (3.1), where the g functions are 
supposedly universal functions analogous to  f(n).  I n  particular, the longitudinal 
component of the hrbulent intensity and the shear stress are given by 

(4.4) 
(4.5) 



Structures in two-dimensional, small-dejicit, turbulent wakes 47 

0.2 

0.2 

- 
UZ - 
ux 

0.2 

I I I I I 

- 3  -2  - 1  0 1 2 

t 
FIQURE 7. The measured distributions of yll(q) for the solid strip, the 70 % solidity screen, and the 
symmetric airfoil. The different symbols represent different downstream locations. The solid lines 
represent the best fit to each data set. 

The measured distributions of gll(q) for the solid strip, 70 % solidity screen, and the 
symmetric airfoil are shown in figure 7. The data indicate that although each wake 
is approximately self-similar, the function gll(l;l) depends on the nature of the wake 
generator. To elucidate the differences in the measured 42 distributions, we plotted 
a normalized function defined by 

(4.6) *-a u - UmaxGii(q), 

which is shown in figure 8 for the three data sets. A good measure in assessing the 
lack of universality is the ratio ucE/Gmax (where the subscript CL refers to the centre 
plane of the wake), which varies from 0.76 for the solid strip to 0.9 for the airfoil. 
This ratio is correlated with the rate of spread of the wake or the decay of the mean 
velocity on the centreline. 

The degree to which each of the wakes approaches a self-preserving state can be 
determined from figure 9, which shows the downstream variation of the square root 
of gmax/u& For a self-preserving state, this statistic should be a constant, independent 
of 2. Notice that the wake behind the solid strip reaches a self-preserving state more 
rapidly than the wakes behind the screen or airfoil. (Recall that the airfoil wake has 
a large negative value of x,,.) The self-preserving nature of gla(q), the normalized shear 
stress, for the airfoil can be determined from figure 10, where stress distributions a t  
8 downstream locations in the range 485 < 3 < 800 are presented. Similar results were 
obtained for the solid strip and 70 % solidity screen. These data were obtained at a 
free-stream velocity of 7.5 m/s, rather than 14.5 m/s, because we had better control 
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FIGURE 8. The normalized turbulent intensity distributions for the three generators, The value of 
GcL/Gmax for each generator is indicated. The solid lines represent the best fit to each data set. 
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FIGURE 9. The downstream variation of (gll,max)i for the three generators; m, airfoil; A, 70% 
solidity screen; 0 ,  solid strip. 
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FIGURE 10. The measured distributions of gla(q) for the airfoil at eight downstream locations. 

of the temperature of the airflow at the lower velocity. The temperature was 
maintained to within f O . l  "C of the calibration temperature for the X-wire runs. 
The corresponding Reynolds numbers, Res, for the airfoil are 1260 and 1996, 
respectively, and certainly no significant change in the flow structure occurs between 
these Reynolds numbers. The function q12(r]) attains a self-preserving shape more 
rapidly than does qI1(r]) for all three wake flows. 

A link between the variation in the spreading rate of the mean flow and qI2(r]) in 
the self-preserving region can be obtained from the mean momentum equation, which 
in linearized form is given by 

This equation can be integrated to yield 

Note that A , / 2  W, varies by 43 yo between the solid strip and the symmetric airfoil 
and, therefore, g12(q) must also differ by this amount, asf(r]) is a universal function. 
Reynolds stress distributions were measured a t  one downstream %-location for the 
two wake generators. The downstream location chosen corresponds to 5 values of 614 
and 733 for the solid strip and airfoil, respectively, well within the self-preserving 
region for each wake. The Reynolds number for the measurements is the nominal 
2000, the value used to obtain the A ,  and W, data. Figure 11 shows the measured 
values of G/u;  for the two generators. The solid lines represent the theoretical 
prediction for each wake based on the linearized momentum equation and f(r]), i.e. 
(4.8). Note that the distribution for the airfoil definitely has larger values than that 
for the solid strip. Similar data were also obtained for the 70 % screen and the results 
fell between those for the solid strip and airfoil, which is consistent with (4.8). The 
agreement between the data and the linearized theory provides convinoing evidence 
for the lack of universality of the turbulent structure of two-dimensional far wakes. 
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FIGURE 1 1 .  The distributions of E / u ;  for the solid strip and the airfoil. The solid lines represent 
the linearized theory prediction, equation (4.8). m, airfoil, 5 = 733; 0 ,  solid strip, Z = 614. 
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Indeed, the lack of universality of ii& presented by various investigators for the 
circular cylinder triggered the present investigation (figure 2). The peculiar shape of 
Gll(v), which has a local minimum at r] = 0, is associated with a distribution of large 
vortices about the centreline of the wake (see Sat0 & Kuriki 1961 ; Wygnanski, Oster 
& Fiedler 1979). It was therefore anticipated that large coherent structures which 
retain their characteristic shape and associated velocity perturbation are responsible 
for the apparent dependence of the wake on the conditions at its origins. 

4.4. Spectra and normal modes of instability 
Spectra of the streamwise component of the velocity fluctuations were measured at 
several Z locations in the wake behind the flat plate. The measurements presented in 
figure 12 were taken on the centreline at 102 < 5 < 587, while the spectra in figure 13 
were measured along a curve representing the outer boundary of the wake, i.e. 
at  r] = 3. Only the most significant decade of the spectra has been plotted. The 
abscissa on these figures is frequency plotted on a logarithmic scale, while the ordinate 
isfF(f) in order to represent the relative contribution to the streamwise component 

of intensity at  a given frequency f [i.e. U'L K F( f) df = fF( f) d (logf)]. 

The spectra measured on the centreline of the wake (figure 12) have a shape which 
is typically observed in any unbounded, turbulent, shear flow (Champagne 1978). The 
spectral distribution is broad, and the frequency range associated with the most 
energetic eddies gradually moves toward lower frequencies as the flow develops in 
the downstream direction. The insert in figure 12 shows a log-log plot of the 
normalized (to unity) spectra F ( f ) .  The frequency has been rendered non-dimensional 
using the local length scale, L,, and U,. The similarity of the spectral distribution 
indicates that the length scales associated with the energy-containing eddies 
( A  = U,/f) are proportional to the width of the wake, Lo, which is therefore an 

5 1  



Structures in two-dimensional, small-deficit, turbulent wakes 51 

I I I I I I I l l  I I 
10 100 300 

FIQIJRE 12. Spectra of u ductuations on centreline of flat-plate wake at various downstream 
positions. Insert shows similarity of spectra when scaled by Lo and Urn. 

f(4 

appropriate characteristic lengthscale for comparing the mean velocity profiles 
generated by various obstacles. 

The spectral measurements at 7 = 3, shown in figure 13, represent fluctuations 
induced by the passage of the large turbulent structures in the wake since the 
coordinate 7 = 3 is located outside the turbulent interface. The insert in this figure 
shows that, as with the centreline spectra, these spectra also scale with the local width 
Lo. Note the shift of the spectral peaks toward lower frequency with increasing Z. 

Equation (3.15) was solved for the prescribed local mean velocity field and 
numerous real frequencies to obtain the variation of the spatial rate of amplification 
( -ar) with increasing distance from the flat plate. The results of these computations 
indicate that the maximum local amplification rate shifts toward lower frequencies 
with increasing 5. Figure 14 shows the spatial amplification rates for different 
frequencies. The value of Z for which a constant frequency line intercepts the Z-axis 
(i.e. a, = 0 )  corresponds to the streamwise location at which a wave at that frequency 
has undergone a maximum amplification according to locally parallel, linear, inviscid 
stability theory. A plot of these intercepts versus frequency, shown also in figure 14, 
represents the dependence of the expected predominant frequency in the wake on 
the distance from the trailing edge of the flat plate. The measured predominant 
frequency range, defined as those frequencies a t  7 = 3 whose amplitude is within 90 yo 
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FIQURE 13. Spectra of induced u fluctuations at 7 = 3 in the flat-plate wake at various 
downstream locations. Insert shows similarity of spectra when scaled by Lo and U,. 

of the peak energy value, are plotted in figure 14 and compared with the computed 
results. The dashed lines show the measured predominant frequency range determined 
for 7 = 0. The good agreement between the measured predominant frequencies 
associated with the passage of the large coherent structures and the most-amplified 
frequencies calculated using linear stability theory suggest that the large structures 
observed in this flow may be related to the two-dimensional instability modes. 

4.5. The ampliJmtion of imposed sinuous oscillations 
Two-dimensional sinusoidal oscillations in the direction normal to the mean flow were 
generated by the motion of a small flap hinged to the trailing edge of the flat plate. 
The frequency of the imposed oscillation was matched to the expected most-amplified 
fluctuations measured at 7 = 3 in the region of interest. A typical power spectrum 
measured with and without excitation is presented in figure 15. Small-amplitude 
oscillations do not affect the turbulent intensity in the wake nor do they affect the 
shape of the spectral distribution. The two spectra presented in figure 15 are almost 
identical, with the exception of the peak corresponding to the frequency of the 
excitation. 

In order to be sure that the instability mechanism in the wake is actually 
responsible for the amplification of the imposed oscillations, measurements of spectra 
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FIQURE 14. Spatial amplification rates computed for several disturbance frequencies in a wake. 
Insert shows expected predominant frequency (computed) compared to measured predominant 
frequency range as a function of Z. 
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FIQTJRE 15. The effect of forcing on the measured u spectrum at Z = 400. 
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FIQTJRE 16. The effect of forcing frequency on the velocity spectrum at a fixed location in the 
wake. 2 = 400. 

were repeatedly taken at one location in the flow for a variety of forcing frequencies 
while all other controlled variables were unchanged. Since the background turbulence 
level is not significantly affected by the introduction of forcing (figure 15), the ratio 
of the amplitudes between the imposed wave and the background exhibits the 
sensitivity of the wake to the imposed sinuous perturbations. The normalized 
spectrum in the centre of figure 16 shows the ratio of amplitudes for the most-amplified 
frequency at the location considered. When the frequency of forcing was either higher 
or lower than the most-amplified frequency for the given location and flow conditions, 
the ratio between the peak amplitude and the background diminished. In view of 
the symmetry of the response around the most-amplified frequency (figure 16), which 
was repeated a t  other flow conditions (and therefore other frequencies), the possibility 
of resonance of the mechanical flap system was discarded. 

The amplitude and phase of an artificially excited sinuous wave at a frequency 
corresponding to fO/U = 6.4 x lop3 (f = 20 Hz) were calculated for the wake of the 
flat plate. The mean flow required for the solution of (3.15), (3.18) and (3.19) was 
provided by (4.1) and table 2 (i.e. W, = 1.57, A ,  = 0.323, 2, = 48). These equations 
were solved at intervals of 5 = 10 for a rectangular window starting at Z = 250 and 
ending at Z = 750 and at  intervals of 0.1 between -40 < y/28 < 40. For a given 
frequency (B = 2nf (~5,)~- ,60/ Urn),  the eigenvalues a(x) and eigenfunctions #(z, y) and 
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FIGURE 17. Amplitude distribution of u fluctuations phase locked to the external sinuous 
forcing signal. f = 400. 
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FIGURE 18. A comparison between the measured and predicted u perturbation amplitude 
distributions at several f locations in a sinuously forced wake. A is not A(x)  of theory. 

&x, y) were evaluated at each of the 51 streamwise locations. These functions, their 
derivatives with respect to both x- and y-coordinates, and the mean flow information 
were used to determine the correction term for slowly divergent flow A(x)  (equation 
(3.18)). Only the streamwise component of the velocity perturbation was measured 
and compared with the calculations. 
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FIGURE 19. The variation of the computed eigenfunotion with Z. U ,  = 7.4 m/s; 0 = 2.36 mm; 

A typical distribution of normalized amplitudes of the sinuous mode across the 
entire wake is shown in figure 17. The solid line represents computed values, while 
the triangles represent experimental results a t  5 - 500. The data were acquired by 
recording the velocity, together with the sinusoidal signal activating the flap. The 
velocity signal was phase-averaged over 300 cycles of the flap motion, and the Fourier 
transform of these average records provided the phase and amplitude estimates of 
the spectral elements of the velocity field, which were quite free from the random, 
turbulent fluctuations present in the original signals. There is little doubt that the 
artificially excited wavetrain can be described by an inviscid linear model, in spite 
of the fact that the flow is fully turbulent. One may note that the measured amplitude 
distribution in figure 17 is not exactly symmetrical about the centreline; the lack of 
symmetry is partly attributed to interference between the probe holder and traversing 
mechanism, to the large structures in the wake, and to the presence of the varicose 
mode. 

A detailed comparison between the predicted amplitude distribution of the forced 
wave and measured amplitude profiles a t  eight streamwise locations is shown in 
figure 18. In  the bottom part of this figure, the velocities were normalized by their re- 
spective maxima, which are replotted at  the top. The computed maximum ampli- 
tude at  X = 700 was assigned the value of unity, which is the only floating constant 
in this comparison. The predicted and measured lateral distributions of amplitudes are 
in good agreement with one another, as is the decay of the maxima with increasing 
distance from the generator. It was surprising, at first, to note that the maximum 
amplitude of the forced wave actually diminished with 5, in spite of the fact that 
the quasi-parallel solutions based on (3.14) would predict amplification (a, < 0). The 
reasons for the apparent anomaly stems from the fact that a, is a small negative 
number in the range of distances considered, and it is outweighed by the shape of 
the eigenfunction whose maximum amplitude diminishes with increasing X (figure 19). 
A similar observation for an axisymmetric jet was made by Strange (1982). The value 
of the integral of the perturbation amplitude across the wake increases somewhat with 
increasing X because the width of the wake increases. In  fact, the product of the 
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FIQURE 20. A comparison between measured and predicted phase distributions in a wake. 

maximum amplitude and the local width is nearly constant between Z = 325 and 
Z = 700. This result could not have been predicted by the parallel flow approximation 
because it is sensitive to dL,/dx and to uo/U,. The corresponding measured and 
computed phase profiles are shown in figure 20. 

The amplification of a forced wavetrain in a turbulent, plane wake agrees in 
principle with similar observations made by Sat0 & Kuriki (1961) and Mattingly & 
Criminale (1972) for the growth of small disturbances in a laminar wake. In  fact, only 
qualitative agreement was obtained by Mattingly & Criminale between experimental 
measurements and the predictions of the linearized spatial stability approach, while 
quantitative agreement is seen in the present case. Although improvements were 
made in both theory (inclusion of slow divergence) and experiment (forcing a sinuous 
mode), the type of agreement shown would not have been possible if the interaction 
between the imposed two-dimensional disturbances and the small-scale, three- 
dimensional turbulence in this flow was significant. Mattingly & Criminale attributed 
the discrepancies they observed to the inviscid assumption and to the neglected 
longitudinal gradients in the mean wake profiles; it  seems to us that the inviscid 
assumptions can be retained as long as one considers waves which would have been 
growing spatially in parallel flow. 

4.6. The ampli’cation of natural disturbances in a plane, turbulent wake 
Encouraged by a successful prediction of the propagation of imposed two-dimensional 
perturbations in this flow and intrigued by the shape of the broadband distribution 
of 2 in the wake, we proceeded to analyse the propagation of two-dimensional 
disturbances occurring naturally in a wake. In this case, the entire turbulent signal 
was Fourier analysed, instead of the phase-locked average considered in 54.5, and 
a particular spectral component corresponding to fO/ U ,  = 1.3 x was examined 
in detail. The frequency chosen (f = 40 Hz at U = 7.4 m/s) corresponded approxi- 
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FIQURE 21. The amplitude distribution of the u component f = 40 Hz and Z = 587 in the 
unforced wake. 

mately to the anticipated most-amplified sinuous mode in the range of Z considered. 
A typical profile of (q)t in the wake of a flat plate corresponding to 5 = 587 is shown 
in figure 21. The resulting lateral distribution of amplitudes of (q)f is quite similar 
to the broadband distribution of u2 shown in figure 7, although the ratio 
[($)cL/($)max] is generally lower than the corresponding broadband distribution. 
Because the data are no longer phase locked, the actual amplitudes plotted are much 
larger than for the imposed wavetrain. Since the calculated amplitudes do not vanish 
on the centreline of the wake as predicted by the sinuous mode of inviscid 
amplification, another mechanism has to be considered. A hint was provided by the 
fact that the amplification rates ( -a2) predicted on the basis of the parallel flow 
approximation were overwhelmed by the presence of longitudinal gradients in the 
mean flow (figure 17). It seems plausible that the same longitudinal mean flow 
gradients may have enhanced the relative importance of the varicose mode, which 
would contribute to the amplitude of the fluctuations on the centreline; otherwise, 
nonlinear effects and secondary instabilities may have to be considered. 

The calculation procedure outlined in $4.4 was repeated for fO/U,  = 1.3 N lop2 
and the appropriate mean flow parameters (table 2). The calculations were done twice ; 
once for the sinuous motion, then a second time for the varicose mode. By assuming 
that, to the first order of approximation, one may simply superimpose the amplitudes 
of the individual modes of instability, neglecting any correlation between them, the 
resulting amplitudes were calculated. For the purpose of comparison between 
computations and experiment, it was assumed that the initial amplitudes resulting 
from both modes are equally important; namely, that the maximum amplitude of 
the varicose mode is equal to the maximum amplitude of the sinuous mode at some 
initial 5-distance from the generator. The results of these calculations are plotted in 
figure 22 for 370 < Z < 640 ; the symbols in the figure represent data calculated from 
experimental results and filtered at  f O / U ,  = 1.3 - There is a qualitative 
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FIGURE 22. A comparison between measured and predicted u amplitude distributions at several 
?i! locations in an unforced wake. A is not A ( z )  of theory. 

xc400 ncm 

FIGURE 23. Large coherent structures photographed in the wake of the flat plate with no 
forcing. 5 N 500 and Re, = 600. 

agreement between the predicted and measured lateral distributions of the 
amplitudes, indicating that both modes of instability are probably present and can 
give rise to the peculiar profile of the u fluctuations in the wake. The agreement 
between theory and experiment in this case is not as good as for the forced sinuous 
wave, suggesting that either the two-dimensional approximation is invalid or the 
simple linear superposition neglecting the phase relation between both modes is 
inadequate. Another possible error stems from the nonlinear terms neglected in the 
present context. 

In order to  explore further the importance of the interaction between the two modes 
of instability, we resorted to flow visualization using a smoke wire. The wire was 

FLM 168 3 
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positioned at Z = 350, while the camera was located a t  F = 500. The smoke patterns 
were photographed at U ,  = 3.4 m/s (corresponding to Re, = 600), rather than a t  
U ,  = 7.45 m/s to enhance the quality of the results. The smoke wire did not work 
well at the higher velocity. Although 8 is approximately 20% higher for the lower 
Reynolds number, this case is representative for the larger Reynolds number case 
(Re, = 1035) as the large-scale turbulence should be relatively insensitive to the 
Reynolds number change used here. Large coherent structures are clearly visible in 
the wake of the flat plate (figure 23), even in the absence of any imposed oscillations. 
These structures are similar in appearance to the Karman vortex street because they 
seem to be comprised of vortices of alternating sign of vorticity, which are placed 
in a staggered manner on both sides of the wake centreline. Therefore, neither the 
varicose mode, which requires that the vortices appear in pairs distributed 
symmetrically about the centreline, nor the sinuous mode, which requires vortices 
whose centre coincides with the centreline, dominate this flow. Although the vortices 
are large and coherent and have a prevailing wavelength, hpr of approximately 10 cm, 
there is sufficient irregularity in their shape, size, and position to cause the spectrum 
of the induced fluctuation at the edge of the wake to be fairly broad (figure 13). The 
introduction of periodic forcing did not have a significant effect on the shape and 
scales of the large eddies visualized in this manner. For the unforced case, the 
flow-visualization results indicate that AJL, - 3 for Re, = 600. The theoretically 
most-amplified wave can be determined from figure 14 to have a frequency of 75 Hz 
corresponding to a wavelength of 9.9 cm for the higher velocity, Re, = 1035, case. 
If one assumes that the normalized mean velocity profile is the same for both 
Reynolds number cases, the frequency of the most-amplified wave would scale with 
U,, and therefore, the wavelength remains constant a s h  = c/f = U,/f. To determine 
Lo for the Re, = 600 case, we assumed Lo/8 is independent of Reynolds number in 
the turbulent range considered. Then, using the measured results for Re, = 1035 
(table 2), Lo for the lower Reynolds number flow visualization case could be 
determined. The theoretical prediction for Re, = 600 is Ap/Lo = 3.5, which is in good 
agreement with the flow-visualization results. Since the energy-containing eddies 
have a scale of the order of Lo to 2L0, the wavelength of the most-amplified wave 
from linear stability theory is one to two times larger than the energy-containing 
scales of the turbulence. 

The degree of two-dimensionality of these structures was first estimated by placing 
the smoke wire parallel to the circular cylinder but displacing it from the generator 
in the lateral direction in order that  the smoke would not be entrained by the wake 
before 5 = 300. The resulting photo (figure 24) indicates that  the large eddies have 
a tendency to be two-dimensional, although the two-dimensionality is by no means 
perfect. There appears to be a variation of amplitudes along the span of the wake, 
as well as phase irregularities. 

Coherence spectra calculated from u fluctuations sensed by two probes separated 
in the spanwise direction provide a quantitative measure of the two-dimensionality 
of the various scales. The two-point, cross-correlation function for stationary random 
variables ui(x,  t )  and u j ( x + r ,  t + 7 )  is defined as 

(4.9) R,,(x, r ,  7 )  = u,(x, t )  u,(x + r ,  t + 7 )  > 

and the cross-spectrum, . P r n  - 
&(x, r ; f )  = J 2n: -, Rtj(x,  r ; 7) eienfT d7 = Ci,(r, x ; f )  - iQi,(x, r , f )  (4.10) 
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FIGURE 24. The spanwise coherence of the large eddies in the wake of a circular cylinder at 
I ‘v 600 and Re, = 600. 

where Cij is called the cospectrum and Q t j ,  the quadrature spectrum. The coherence 
spectrum is defined as 

(4.11) 

where F t t ( x ; f )  and F , , ( x + r ; f )  are the familiar (one-point) energy spectra, i.e. 

The phase angle etj can be obtained as 

(4.12) 

(4.13) 

The coherence spectrum is bounded, and its value must be between 0 and 1. We will 
consider the component Coh,,(x, Az; f), which represents the degree of spatial 
correlation between the Fourier components of u,(x ,  t )  and u,(x+kAz, t + T )  a t  the 
same frequency, where k is a unit vector in the z- or spanwise-direction. 

A spanwise rake containing six hot-wire probes spaced from 1.1 to 2.54 cm apart 
was used for the coherence data. Measurements were taken in the wake of the flat 
plate, with and without excitation, at 5? = 430 and 646, with the rake located at 7 = 0, 

3-2 
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FIQURE 25. The response of the wake to various sinuous forcing levels. f = 646 and 7 = 0.6. 0 ,  
f=50Hz ,Az /L0=10;  O , f = 5 0 H z ,  Az/L,=O.4; . , f=100Hz ,  Az/L,=lO; O , f = 1 0 0 H ~ ,  
Az/L0 = 0.4; A, f = 150 Hz, AzlL, = 10; A, f = 150 Hz, At/L, = 0.4. 

Frequency (Hz) 

FIGURE 26. Coherence spectra measured at Z = 646, q = 0.6, and AzjL, = 0.4 in the wake of the 
flat plate. Upper trace without forcing. Lower trace with forcing at 50 Hz. 
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FIGURE 27. (a) Coherence spectrum measured at Z = 646, 11 = 0.6, and Az/L,  = 10, with forcing 
at 50 Hz. ( b )  Same as (a) except = 3. 

0.6, and 3. The lateral position 7 = 0.6 approximately corresponds to the location 
at which u-fluctuations are most energetic. The response of the wake at 5 = 646 and 
7 = 0.6 to various levels of excitation is shown in figure 25 for two Az spacings, 1 . 1  
and 25.4 cm apart. The values of the coherence at the excitation frequency (50.0 Hz) 
and its first and second harmonics as a function of amplitude are presented. All 
amplitudes are scaled by the highest amplitude of oscillation. Where the relative 
forcing amplitude was less than 0.25, the coherence spectrum responded in a linear 
manner. For amplitudes in the range of 0.25 to 0.5, the value of the coherence at the 
forcing frequency is nearly independent of Az in the range investigated, at least up 
to AzlL,  = 10. The relative amount of energy tied up with the forcing frequency can 
be determined from the spectrum of the velocity fluctuations. In the case, the spectral 
peak at  50 Hz was one order of magnitude above the ‘background’ turbulent 
fluctuations. 

Figure 26 shows the coherence spectra measured at 5 = 646, 7 = 0.6, and 
A z / L ,  = 0.4, with and without forcing. The forcing frequency was 50 Hz, correspond- 
ing to the expected predominant frequency at this 5, and the relative amplitude 
of forcing was 0.25. The effect of forcing sharply enhances the value of the coherence 
at the forcing frequency to 0.92, with little effect on the rest of the spectrum. The 
corresponding data for AzlL,  = 10 are shown in figure 27(a),  where only the data 
for the forced case are presented. The coherence for the unforced case at this 
separation vanished at all frequencies. For the forced case, the entire correlation is 
contained in the spectral spike at 50 Hz, for which the coherence is 0.87. Similar 
results were obtained at forcing levels as low as 0.05, where the peak correlation was 
0.21 and 50 Hz. A t  7 = 3 (figure 27b), a much higher coherence at the forcing 
frequency was measured (0.98), indicating that the large structure in the wake must 
be highly two-dimensional to generate such a result for the large spanwise separation, 
A z / L ,  = 10. For the unforced case, the coherence is nearly zero from 10 to 260 Hz. 
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FIQURE 28. Streak-lines computed assuming spatial instability of parallel flow at 5 = 300; (a )  
sinuous, most-amplified mode ; ( b )  varicose, most-amplified mode; (c) combined modes. 

The results indicate that a slight amount of forcing generates a strong two-dimensional 
wave in the wake at the forcing frequency. 

Is the proposed model capable of explaining the large structures observed in 
figure 23 ? For this purpose, some streak-lines had to be calculated. Since the calcula- 
tions were aimed at a qualitative understanding of this phenomenon, a parallel flow 
approximation was invoked locally. It was assumed that the particles were uniformly 
released at 3 = 300, where uo/U,  = 0.06. The prevailing wavelength from figure 23 
was used to  determine B corresponding to the spatially most-amplified sinuous 
wavetrain in this mean flow. Both u and v components of the perturbation velocity 
were calculated across the entire wake, and the corresponding particle paths were 
established from the equations 

(4.14) 

(For a detailed description of the procedure, see Michalke 1965.) The initial amplitude 
of the u-component of the velocity perturbations was 0.025 U,. This corresponds to  
30% of uo, which is a constant in these calculations. 

Five of the streak-lines calculated taking only the sinuous mode into consideration 
are shown in figure 28 (a). The streak-lines have a sinusoidal pattern undulating about 
the centreline of the wake. The amplitude of the undulations increases with increasing 
distance from the source; a t  large distances, most of the particles congregate a t  the 
outer edge of the wake. 

' 
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FIGURE 29. Streak-lines from figure 28 (c) plotted on larger scale to show staggered nature of 
particle congregation. 

The corresponding, most strongly amplified varicose mode has a perturbation 
frequency equal to Q of the frequency of the prevailing sinuous mode (not quite a 
subharmonic frequency). The computed streak-lines for the varicose mode are shown 
in figure 28 (b) .  The particles in this figure congregate in lumps, which are symmetrical 
about the centreline of the wake. The streak-lines shown in figure 28(a)  or ( b )  bear 
no resemblance to the observed coherent structures seen in figure 23. 

The streak-lines shown in figure 28 ( c )  represent the combined motion of both modes 
of instability when the coefficient of the velocity perturbation is still maintained at 
0.025. The initial ratio between the amplitudes of u and w in the varicose mode and 
the sinuous mode was 0.7. (This number simply appeared because the eigenfunctions 
were not normalized ; changing the initial ratio by a factor of two made no substantial 
difference in the pattern.) The initial phase relation between the modes was assumed 
to be zero. (Changing this number also had no effect on the basic pattern at  some 
distance downstream from the source location.) The phase velocities of the two modes 
are not equal and differ by a few per cent. 

The prevailing wavelength of the streak-lines (figure 28c) still corresponds to the 
prevailing wavelength of the sinuous mode, but the presence of the varicose mode 
not only modulates the streak-lines but also contributes to an apparent chaotic 
behaviour. Most important is the fact that these streak-lines, when replotted on a 
larger scale, resemble the pattern observed in the smoke photographs (figure 23). 
Namely, the particles congregate in a staggered manner about the centreline and the 
large eddies are, at times, separated by deep incursions of ‘potential ’ fluid. Sometimes, 
these incursions are narrow (marked by the letter ‘N’  in figure 29) and, sometimes, 
they are wide (marked by ‘W’). It therefore transpires that only the combination 
of both modes can successfully describe the flow. 

The distributions of vorticity for the three cases considered in figure 28 were 
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FIQURE 30. Vorticity perturbation contours computed for the three cases of streak-lines shown 
in figure 28: (a) sinuous, most-amplified mode; ( b )  varicose, most-amplified mode; (c) combined 

modes. 

calculated directly from the eigenfunctions solved, because the vorticity perturbation 

(4.15) 

and the total vorticity 

a(z, y, t )  = - U'+0.015 RP {w(y) exp [i(as-Pt)]}, (4.16) 

which is, of course, periodic in time. The vorticity contours plotted in figure 30 were 
calculated for t = 2x/p and for 355 6 5 < 385, as in figure 29. (The shaded regions 
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correspond to negative vorticity.) By neglecting either the varicose mode [figure 30a] 
or the sinuous mode [figure 30b], the resulting vorticity contours appear to be very 
regular. The contours are either symmetrical or antisymmetrical about the centreline 
and indicate intensification of vorticity with increasing 3. The vorticity contours 
resulting from the combined two modes of instability [figure ~ O C ]  are surprisingly 
similar to the contours produced by the sinuous mode alone. One may notice, 
however, that the intensity of the contours in figure 30c are modulated by the varicose 
mode, even if they are not severely distorted by the addition of this mode. A simple 
superposition of figure 30c on figure 28 leads to the conclusion that a congregation 
of particles observed in a still photograph does not necessarily correspond to a 
concentration of vorticity. 

5. Discussion 
The velocity and length scales in a plane, turbulent, and supposedly self-preserving 

wake are dependent on inflow conditions and, therefore, on the shape and size of the 
obstacle generating the wake. We could not prove that these scales will not become 
universal functions of (z/O) at extremely large values of (z/O), but the distances at 
which this may (or may not) occur may be so large as to have no practical impact 
on the problem. The range of z/O values in the present study extended up to 2000, 
corresponding to uo/U - 0.03. The dependence of the plane mixing layer on inflow 
conditions was observed some years ago (Champagne, Pao & Wygnanski, 1976) and 
traced to the presence of large coherent structures (Oster & Wygnanski 1982). The 
existence of large coherent structures in a wake, however, was often confused with 
vortex shedding, which was so ably discussed by Karman (1912) in the lee of a circular 
cylinder at low Reynolds numbers. The large eddies proposed by Townsend (1956) 
and Grant (1958) bear little resemblance to the structures observed presently, 
although Townsend suggested that the large eddies present in fully turbulent free 
shear flows might have been generated by hydrodynamic instability of the mean flow. 

What is the cause for the apparent dependence of the small-deficit wake on the 
shape of the generator? The nature of the flow in the vicinity of the generator, 
including any vortices shed by the generator, can provide a plausible explanation for 
this phenomenon. The frequency, amplitude, and the predominant mode of the initial 
perturbation vary from one geometry to another. For all geometries investigated, the 
predominant mode of shedding was sinuous, but the presence of the varicose mode 
was also detected in the vicinity of the low-solidity screens and circular cylinder. The 
strongest sinuous oscillations were observed downstream of the thick symmetrical 
airfoil because the initiation of separation from one surface changed the circulation 
around the airfoil, moving the front stagnation point toward the separated surface 
and therefore initiating a separation from the opposite surface. The amplitude at the 
shedding frequency was three orders of magnitude stronger than the background 
turbulence. The amplitudes of the oscillations generated by a circular cylinder and 
by the screens were approximately two orders of magnitude above the background, 
while the amplitude of the oscillations downstream of the solid strip held normal to 
the flow was of the same order of magnitude as the background. 

It is also suspected that the lower the frequency of the shedding, the more 
persistent the initial effects will be; in fact, the frequency of shedding downstream 
of the symmetrical airfoil of a given thickness depends on the chord length, provided 
the flow separates upstream of the trailing edge. The effects of frequency, however, 
appear to be less significant than the effects of amplitude. A detailed investigation 



68 I .  Wygnanski, F .  Champagne and B.  Marasli 

0.1 I I I 

D 

o n  

n o a  A - - 

re A D  
u, D 

0.05 - - 

n n  D 
a 

n a a 0 
0 

a n 
O .  0 D D 

0 0 .  - 
a n 0 . .  

- 0 .  

I I I 

0 200 400 

of the near wake has been undertaken in order to determine the effects of inflow 
condition more precisely. 

Cimbala et al. (1981) observed, with the aid of a smoke wire, the evolution of large 
coherent structures in a wake of a circular cylinder up to Re, < 2000 and in a wake 
of two screens at  comparable Re. These structures became apparent some 200 
diameters downstream of the cylinder and had a regular frequency two to  three times 
lower than the Strouhal frequency. They were unable, however, to corroborate their 
results with spectral measurements for their high-Reynolds-number case and 
attributed it to  the high turbulence level in their tunnel. Some measurements of 
spectra a t  the outer edge of the wake were carried out for two wake generators: (i) 
a circular cylinder at Re, = 2500 corresponding to Re, = 5000 and (ii) a screen having 
45 yo solidity, also a t  Re, = 2500. I n  the immediate neighbourhood of the cylinder, 
the predominant spectral peak (not shown) corresponded to the shedding frequency 
of the cylinder, i.e. at St, = 0.206 or St, = 0.10. At 5 > 50, the predominant spectral 
peak dropped quite abruptly to  St, 1: 0.03. Thereafter, the evolution of the spectral 
peak was rather slow and is hardly detectable on the scale shown in figure 31. The 
spectral peaks associated with the screen tailored to produce the same momentum 
thickness as the circular cylinder are similar to those mentioned above a t  X > 250. 
The big difference between the two flows occurs a t  50 < S < 250, where the 
characteristic frequency of the spectral peaks generated by the screen decreases slowly 
with X .  At Z > 150, one may detect the appearance of an additional peak in the 
spectrum, which roughly corresponds to the spectral peak in the far wake of the 
circular cylinder; this peak amplifies quickly and dominates the spectrum a t  X > 200. 
It seems that the coherent structures in the near wake of this particular screen retain 
some of their characteristics up to X = 250, while in the wake of the circular cylinder, 
this transition is accomplished a t  X = 50. It is believed that the shear layers generated 
in the wake of the screen (see insert in figure 31) undergo an instability process 
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reminiscent of the plane mixing layer (Gaster et al. 1985), generating eddies whose 
characteristic frequency decreases in the direction of streaming. Whether these eddies 
grow by entraining fluid from the surrounding stream or by a process of amalgamation 
remains to be seen. 

Since Cimbala et al. (1981) did not observe any vortex amalgamation in their 
visualization experiments, one would be inclined to think that the gradual decrease 
in the characteristic frequency stemming from an increase in the wavelength of these 
eddies is caused by entrainment. In any event, once the scale of these eddies becomes 
comparable to the width of the screen, an interaction between two shear layers of 
opposing vorticity has to occur before the wake will become ‘fully developed’. It is 
possible that a phase accommodation ensues, resulting in a slow evolution of the 
typical large structures existing in the self-preserving region. The evolution of the 
fully developed wake is currently being investigated, but the importance of initial 
conditions is evident in figure 31. 

The mutual interaction between the large coherent structures and the mean flow 
is outside the scope of the linear stability theory. However, the dependence of the 
mean flow field on the initial conditions, and consequently on the large coherent 
structures, poses precisely such a problem. The notion that the free-stream turbulence 
and the shape of the generator may have an effect on the development of a 
self-preserving wake was proposed by Symes & Fink (1977). These authors observed 
that the wake generated by a rectangular cylinder did not evolve in the same manner 
as the wake generated by a circular cylinder, but the most important observation 
stems from the fact that the evolution of the wake was sensitive to grid turbulence, 
whose integral scale was an order of magnitude larger than the scale of the generator. 
This suggested that the externally imposed turbulence interacted with the flow far 
downstream, where the typical scales in the wake and in the free stream became 
comparable. It also implied that an instability mechanism might be responsible for 
this result. The present investigation confirmed this notion, although nonlinear terms 
have to be considered in order to assess the interaction between the mean flow and 
the imposed oscillation. Perhaps, an integral approach similar to the one used by KO, 
Kubota & Lees (1970) might predict such an interaction through the Reynolds stress. 
The concept of flow equilibrium and self-preservation has to be carefully reconsidered 
in view of the present findings, in spite of the fact that the normalized shape of the 
mean velocity profile was not affected. The dependence of the lateral distribution of 
the turbulent intensities on the nature of the generator (figure 7) and the relatively 
poor collapse of the dimensionless data onto a single function for a given wake 
generator raise the possibility that the flow is not in equilibrium. Although this 
possibility was considered remote at the start of this investigation, a plot showing 
the difference between the maximum intensity (u”),,, and the intensity on the 
centreline of the wake (iP)cL normalized by ui is shown in figure 32 for the wake of 
the flat plate. If the flow was in perfect equilibrium, then (u”)cL/ui should 
have been constant at all 3. Although this plot is very susceptible to experimental 
inaccuracies and should be treated with due caution, the lack of constancy might have 
been caused by a nonlinear interaction between the varicose mode and the sinuous 
mode of instability. The possible interaction between the two modes will be 
investigated in detail by forcing the wake simultaneously with a combination of 
modes. 

The assumption of parallel flow (3.2) makes the eigenfunction $(y) and the 
eigenvalues a and /3 invariant with respect to streamwise distance from the generator. 
Thus, for p = 0 (i.e. spatially amplified waves), only a single mode containing the 
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FIGURE 32. The variation of turbulent intensity defect on the centreline of the wake of a flat 
plate. 

largest 1 -a,l need be considered. However, the amplification rates in the small-deficit, 
plane wake are so small that one cannot disregard one mode of instability in favour 
of another simply because its I -ail is the largest. The long distances required for an 
unstable wave to amplify increase the relative significance of the longitudinal 
gradients in the mean velocity. By neglecting the varicose mode in favour of the 
sinuous one, Sato & Kuriki (1961) had to resort to nonlinear effects in their attempt 
to explain the cause for the generation of two rows of vortices. Mattingly & Criminale 
(1972) offered an alternate explanation, which is based on the vorticity distribution 
of the sinuous mode being superposed on the mean vorticity. The generation of a 
vortex structure reminiscent of a Karman vortex street can quite easily be attributed 
to the superposition of the two instability modes, keeping in mind that the most 
unstable frequency of the varicose mode is only slightly higher than a subharmonic 
of the most unstable sinuous mode. Sinuous forcing of the flow has little effect on 
the shape of the large eddies visualized by smoke until the amplitude of the forcing 
becomes high. In this case, the smoke pattern is more regular and the eddies are 
located closer to the centreline than in the corresponding unforced wake. 

6. Conclusions 
It was experimentally observed that the characteristic velocity and length scales, 

u,, and Lo, when suitably scaled by the momentum thickness and the free-stream 
velocity, do not exhibit universal behaviour and do depend on the inflow conditions 
and therefore on the geometry of the wake generator. The mean velocity profiles for 
each wake, when normalized by their own velocity and length scales, are self-preserving 
and are also identical for all wake generators. The distributions of the turbulence 
intensities normalized in the same manner are almost self-preserving, but they are 
dependent on the geometry of the wake generator. 
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Linear inviscid stability theory, in which the divergence of the mean flow was taken 
into account, predicts quite well the amplification and the transverse distributions 
of amplitudes and phases of externally imposed sinuous waves in a fully developed 
turbulent wake generated by a flat plate. It appears that the large, coherent, vortex 
structures occurring naturally in a wake can be modelled to some extent by linear 
stability theory. Furthermore, the interaction of the two possible modes of instability 
may be responsible for the apparent Karman vortex street-type of structures 
observed visually in the small-deficit, turbulent wake. 
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